Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Med ; 46(1): 3-16, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: covidwho-2225841

RESUMEN

In the current context of the pandemic triggered by SARS-COV-2, the immunization of the population through vaccination is recognized as a public health priority. In the case of SARS­COV­2, the genetic sequencing was done quickly, in one month. Since then, worldwide research has focused on obtaining a vaccine. This has a major economic impact because new technological platforms and advanced genetic engineering procedures are required to obtain a COVID­19 vaccine. The most difficult scientific challenge for this future vaccine obtained in the laboratory is the proof of clinical safety and efficacy. The biggest challenge of manufacturing is the construction and validation of production platforms capable of making the vaccine on a large scale.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pandemias/prevención & control , Neumonía Viral/prevención & control , Vacunas Virales , COVID-19 , Vacunas contra la COVID-19 , Infecciones por Coronavirus/clasificación , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/terapia , Composición de Medicamentos/métodos , Composición de Medicamentos/normas , Composición de Medicamentos/tendencias , Desarrollo de Medicamentos/métodos , Desarrollo de Medicamentos/normas , Desarrollo de Medicamentos/tendencias , Humanos , Seguridad del Paciente , Neumonía Viral/epidemiología , Neumonía Viral/terapia , SARS-CoV-2 , Resultado del Tratamiento , Vacunación/efectos adversos , Potencia de la Vacuna , Vacunas Virales/clasificación , Vacunas Virales/normas , Vacunas Virales/provisión & distribución , Vacunas Virales/uso terapéutico
2.
Am J Health Syst Pharm ; 79(19): 1685-1696, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: covidwho-1890865

RESUMEN

PURPOSE: Interventions to improve the safety and efficiency of manual sterile compounding are needed. This study evaluated the impact of a technology-assisted workflow system (TAWS) on sterile compounding safety (checks, traceability, and error detection), and efficiency (task time). METHODS: Observations were conducted in an oncology pharmacy transitioning from a manual to a TAWS process for sterile compounding. Process maps were generated to compare manual and TAWS checks and traceability. The numbers and types of errors detected were collected, and task times were observed directly or via TAWS data logs. RESULTS: Analysis of safety outcomes showed that, depending on preparation type, 3 to 4 product checks occurred in the manual process, compared to 6 to 10 checks with TAWS use. TAWS checks (barcoding and gravimetric verification) produced better traceability (documentation). The rate of incorrect-drug errors decreased with technology-assisted compounding (from 0.4% [5 of 1,350 preparations] with the manual process to 0% [0 of 1,565 preparations] with TAWS use; P < 0.02). The TAWS increased detection of (1) errors in the amount of drug withdrawn from vials (manual vs TAWS, 0.4% [5/1,350] vs 1.2% [18/1565]; P < 0.02), and (2) errors in the amount of drug injected into the final container (manual vs TAWS, 0% [0/1,236] vs 0.9% [11/1,272]; P < 0.002). With regard to efficiency outcomes, TAWS use increased the mean mixing time (manual vs TAWS, 275 seconds vs 355 seconds; P < 0.001), had no significant impact on average visual checking time (manual vs TAWS, 21.4 seconds vs 21.6 seconds), and decreased average physical checking time (manual vs TAWS, 58.6 seconds vs 50.9 seconds; P < 0.001). CONCLUSION: In comparison to manual sterile compounding, use of the TAWS improved safety through more frequent and rigorous checks, improved traceability (via superior documentation), and enhanced error detection. Results related to efficiency were mixed.


Asunto(s)
Servicio de Farmacia en Hospital , Canadá , Composición de Medicamentos/métodos , Hospitales Comunitarios , Humanos , Tecnología
3.
Cell Mol Immunol ; 19(2): 222-233, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1607212

RESUMEN

Although antivirals are important tools to control severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, effective vaccines are essential to control the current coronavirus disease 2019 (COVID-19) pandemic. Plant-derived virus-like particle (VLP) vaccine candidates have previously demonstrated immunogenicity and efficacy against influenza. Here, we report the immunogenicity and protection induced in rhesus macaques by intramuscular injections of a VLP bearing a SARS-CoV-2 spike protein (CoVLP) vaccine candidate formulated with or without Adjuvant System 03 (AS03) or cytidine-phospho-guanosine (CpG) 1018. Although a single dose of the unadjuvanted CoVLP vaccine candidate stimulated humoral and cell-mediated immune responses, booster immunization (at 28 days after priming) and adjuvant administration significantly improved both responses, with higher immunogenicity and protection provided by the AS03-adjuvanted CoVLP. Fifteen micrograms of CoVLP adjuvanted with AS03 induced a polyfunctional interleukin-2 (IL-2)-driven response and IL-4 expression in CD4 T cells. Animals were challenged by multiple routes (i.e., intratracheal, intranasal, and ocular) with a total viral dose of 106 plaque-forming units of SARS-CoV-2. Lower viral replication in nasal swabs and bronchoalveolar lavage fluid (BALF) as well as fewer SARS-CoV-2-infected cells and immune cell infiltrates in the lungs concomitant with reduced levels of proinflammatory cytokines and chemotactic factors in the BALF were observed in animals immunized with the CoVLP adjuvanted with AS03. No clinical, pathologic, or virologic evidence of vaccine-associated enhanced disease was observed in vaccinated animals. The CoVLP adjuvanted with AS03 was therefore selected for vaccine development and clinical trials.


Asunto(s)
Adyuvantes Inmunológicos/efectos adversos , Vacunas contra la COVID-19/efectos adversos , COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal/inmunología , Pandemias/prevención & control , Polisorbatos/efectos adversos , SARS-CoV-2/inmunología , Escualeno/efectos adversos , Nicotiana/metabolismo , Vacunación/métodos , Vacunas de Partículas Similares a Virus/efectos adversos , alfa-Tocoferol/efectos adversos , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , COVID-19/epidemiología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Modelos Animales de Enfermedad , Combinación de Medicamentos , Composición de Medicamentos/métodos , Inmunidad Humoral , Macaca mulatta , Masculino , Polisorbatos/administración & dosificación , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Escualeno/administración & dosificación , Resultado del Tratamiento , Vacunas de Partículas Similares a Virus/administración & dosificación , alfa-Tocoferol/administración & dosificación
4.
Adv Drug Deliv Rev ; 181: 114083, 2022 02.
Artículo en Inglés | MEDLINE | ID: covidwho-1588554

RESUMEN

Despite the massive interest and recent developments in the field of nanomedicine, only a limited number of formulations have found their way to the clinics. This shortcoming reveals the challenges facing the clinical translation of this technology. In the current article, we summarize and evaluate the status, market situation, and clinical profiles of the reported nanomedicines, the shortcomings limiting their clinical translation, as well as some approaches designed to break through this barrier. Moreover, some emerging technologies that have the potential to compete with nanomedicines are highlighted. Lastly, we identify the key factors that should be considered in nanomedicine-related research to be clinically-translatable. These can be classified into five areas: rational design during the research and development stage, the recruitment of representative preclinical models, careful design of clinical trials, development of specific and uniform regulatory protocols, and calls for non-classic sponsorship. This new field of endeavor was firmly established during the last two decades and more in-depth progress is expected in the coming years.


Asunto(s)
Nanomedicina/métodos , Animales , Composición de Medicamentos/métodos , Humanos , Nanopartículas/química
5.
Int J Mol Sci ; 22(17)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: covidwho-1376841

RESUMEN

In recent years, enzymes have risen as promising therapeutic tools for different pathologies, from metabolic deficiencies, such as fibrosis conditions, ocular pathologies or joint problems, to cancer or cardiovascular diseases. Treatments based on the catalytic activity of enzymes are able to convert a wide range of target molecules to restore the correct physiological metabolism. These treatments present several advantages compared to established therapeutic approaches thanks to their affinity and specificity properties. However, enzymes present some challenges, such as short in vivo half-life, lack of targeted action and, in particular, patient immune system reaction against the enzyme. For this reason, it is important to monitor serum immune response during treatment. This can be achieved by conventional techniques (ELISA) but also by new promising tools such as microarrays. These assays have gained popularity due to their high-throughput analysis capacity, their simplicity, and their potential to monitor the immune response of patients during enzyme therapies. In this growing field, research is still ongoing to solve current health problems such as COVID-19. Currently, promising therapeutic alternatives using the angiotensin-converting enzyme 2 (ACE2) are being studied to treat COVID-19.


Asunto(s)
Enzima Convertidora de Angiotensina 2/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Terapia Enzimática/métodos , Proteínas Recombinantes/uso terapéutico , Enzima Convertidora de Angiotensina 2/farmacología , Ensayos Clínicos Fase II como Asunto , Composición de Medicamentos/métodos , Estabilidad de Enzimas , Terapia Enzimática/historia , Terapia Enzimática/tendencias , Semivida , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Proteínas Recombinantes/farmacología , SARS-CoV-2/efectos de los fármacos , SARS-CoV-2/metabolismo , Resultado del Tratamiento , Internalización del Virus/efectos de los fármacos
6.
Crit Rev Ther Drug Carrier Syst ; 38(2): 75-102, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1251764

RESUMEN

Viral infections such as AIDS, hepatitis, herpes keratitis, and herpes labialis became resistant to drugs and it is difficult to design vaccine. In current era drug-resistant viruses are now treated by nanoparticles (NPs) and this field is known as nanobiotechnology that relates nanoscience with the biological system. NPs due to their antiviral activity are used in the treatment of viral diseases. The advantages of using the NP is its specific target action and increase the efficiency of treatment with minimum side effects. Liposomes, quantum dots, polymeric NPs, solid lipid NPs, silver NPs, gold NPs, and magnetic NPs are used to treat viral infections. NP-based therapeutics have completely replaced the usage of drugs and vaccines for viral diseases treatment. Nano vaccines have been investigated for the delivery of drugs; biomaterials-based NPs are in development to be formulated into nano vaccines. But there are limitations in the manufacturing and stabilization of NPs in the body. This review focuses on the antiviral activity of several NPs, its uptake by different viruses for viral disease treatment, nano vaccines, and the limitation of the NPs as nanotherapeutics.


Asunto(s)
Antivirales/uso terapéutico , Composición de Medicamentos/métodos , Nanopartículas/uso terapéutico , Virosis/tratamiento farmacológico , Virus/efectos de los fármacos , Antivirales/química , Antivirales/farmacología , Química Farmacéutica , Farmacorresistencia Viral , Humanos , Nanopartículas/química , Resultado del Tratamiento , Virosis/virología , Virus/aislamiento & purificación
7.
Mol Pharm ; 18(6): 2448-2453, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1226403

RESUMEN

Nanomedicine has demonstrated a substantial role in vaccine development against severe acute respiratory syndrome coronavirus (SARS-CoV-2 and COVID-19). Although nanomedicine-based vaccines have now been validated in millions of individuals worldwide in phase 4 and tracking of sex-disaggregated data on COVID-19 is ongoing, immune responses that underlie COVID-19 disease outcomes have not been clarified yet. A full understanding of sex-role effects on the response to nanomedicine products is essential to building an effective and unbiased response to the pandemic. Here, we exposed model lipid nanoparticles (LNPs) to whole blood of 18 healthy donors (10 females and 8 males) and used flow cytometry to measure cellular uptake by circulating leukocytes. Our results demonstrated significant differences in the uptake of LNP between male and female natural killer (NK) cells. The results of this proof-of-concept study show the importance of recipient sex as a critical factor which enables researchers to better consider sex in the development and administration of vaccines for safer and more-efficient sex-specific outcomes.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Nanopartículas/química , SARS-CoV-2/inmunología , COVID-19/epidemiología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/química , Composición de Medicamentos/métodos , Ácidos Grasos Monoinsaturados/química , Femenino , Voluntarios Sanos , Humanos , Inmunogenicidad Vacunal , Liposomas , Masculino , Pandemias/prevención & control , Compuestos de Amonio Cuaternario/química , Factores Sexuales , Resultado del Tratamiento
8.
Biochem Biophys Res Commun ; 545: 145-149, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1061767

RESUMEN

In March 2013 it was reported by the World Health Organization (WHO) the first cases of human infections with avian influenza virus A (H7N9). From 2013 to December 2019, 1568 cases have been reported with 616 deaths. H7N9 infection has been associated with high morbidity and mortality rates, and vaccination is currently the most effective way to prevent infections and consequently flu-related severe illness. Developing and producing vaccines against pandemic influenza viruses is the main strategy for a response to a possible pandemic. This study aims to present the production of three industrial lots under current Good Manufacturing Practices (cGMP) of the active antigen used to produce the pandemic influenza vaccine candidate against A(H7N9). These batches were characterized and evaluated for quality standards and tested for immunogenicity in mice. The average yield was 173.50 ± 7.88 µg/mL of hemagglutinin and all the preparations met all the required specifications. The formulated H7N9 vaccine is poorly immunogenic and needs to be adjuvanted with an oil in water emulsion adjuvant (IB160) to achieve a best immune response, in a prime and in a boost scheme. These data are important for initial production planning and preparedness in the case of a H7N9 pandemic.


Asunto(s)
Subtipo H7N9 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/biosíntesis , Gripe Humana/prevención & control , Pandemias/prevención & control , Animales , Antígenos Virales/biosíntesis , Antígenos Virales/inmunología , Composición de Medicamentos/métodos , Composición de Medicamentos/estadística & datos numéricos , Industria Farmacéutica/normas , Femenino , Humanos , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/aislamiento & purificación , Gripe Humana/inmunología , Gripe Humana/virología , Ratones , Ratones Endogámicos BALB C , Vacunas de Productos Inactivados/biosíntesis , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/aislamiento & purificación
9.
Molecules ; 26(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1011589

RESUMEN

The chloroquine family of antimalarials has a long history of use, spanning many decades. Despite this extensive clinical experience, novel applications, including use in autoimmune disorders, infectious disease, and cancer, have only recently been identified. While short term use of chloroquine or hydroxychloroquine is safe at traditional therapeutic doses in patients without predisposing conditions, administration of higher doses and for longer durations are associated with toxicity, including retinotoxicity. Additional liabilities of these medications include pharmacokinetic profiles that require extended dosing to achieve therapeutic tissue concentrations. To improve chloroquine therapy, researchers have turned toward nanomedicine reformulation of chloroquine and hydroxychloroquine to increase exposure of target tissues relative to off-target tissues, thereby improving the therapeutic index. This review highlights these reformulation efforts to date, identifying issues in experimental designs leading to ambiguity regarding the nanoformulation improvements and lack of thorough pharmacokinetics and safety evaluation. Gaps in our current understanding of these formulations, as well as recommendations for future formulation efforts, are presented.


Asunto(s)
Antimaláricos/química , Antimaláricos/farmacología , Cloroquina/química , Enfermedades Transmisibles/tratamiento farmacológico , Composición de Medicamentos/métodos , Hidroxicloroquina/química , Nanomedicina , Animales , Humanos
10.
Adv Drug Deliv Rev ; 169: 168-189, 2021 02.
Artículo en Inglés | MEDLINE | ID: covidwho-970682

RESUMEN

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to an unprecedented effort toward the development of an effective and safe vaccine. Aided by extensive research efforts into characterizing and developing countermeasures towards prior coronavirus epidemics, as well as recent developments of diverse vaccine platform technologies, hundreds of vaccine candidates using dozens of delivery vehicles and routes have been proposed and evaluated preclinically. A high demand coupled with massive effort from researchers has led to the advancement of at least 31 candidate vaccines in clinical trials, many using platforms that have never before been approved for use in humans. This review will address the approach and requirements for a successful vaccine against SARS-CoV-2, the background of the myriad of vaccine platforms currently in clinical trials for COVID-19 prevention, and a summary of the present results of those trials. It concludes with a perspective on formulation problems which remain to be addressed in COVID-19 vaccine development and antigens or adjuvants which may be worth further investigation.


Asunto(s)
Adyuvantes Inmunológicos/síntesis química , Vacunas contra la COVID-19/síntesis química , COVID-19/prevención & control , Desarrollo de Medicamentos/métodos , SARS-CoV-2/efectos de los fármacos , Adyuvantes Inmunológicos/uso terapéutico , Animales , COVID-19/inmunología , Vacunas contra la COVID-19/uso terapéutico , Composición de Medicamentos/métodos , Composición de Medicamentos/tendencias , Desarrollo de Medicamentos/tendencias , Humanos , Proteínas Recombinantes/síntesis química , Proteínas Recombinantes/uso terapéutico , SARS-CoV-2/inmunología
11.
Res Social Adm Pharm ; 17(1): 1997-2001, 2021 01.
Artículo en Inglés | MEDLINE | ID: covidwho-813854

RESUMEN

This article is a report from an experience about a work developed by Farmácia Universitária at UFRJ (FU-UFRJ) during the nCov-19 pandemic period. The aim of this work was to describe its contribution in the production of antiseptic supplies used to prevent contagion by the new coronavirus. The work routine at the pharmacy has been changed to allow the implementation of local workflow during the pandemic, and to adapt the protection rules to meet the safety measures. FU-UFRJ started to manipulate two antiseptic formulations: 70% ethyl alcohol and gel alcohol, which are included in the National Form, manufacturing around 100 L of these formulations, weekly, to donate to different health units. The experience enabled the adaptation to emergency health standards, planning and meaningful guidance to pharmacists and technicians to attend clinics at university hospitals, vaccination center and UFRJ city hall, in order to facilitate the access to adequate hand hygiene to the population.


Asunto(s)
COVID-19/prevención & control , Desinfectantes para las Manos/química , Farmacéuticos/organización & administración , Servicio de Farmacia en Hospital/organización & administración , Antiinfecciosos Locales/química , Antiinfecciosos Locales/provisión & distribución , Composición de Medicamentos/métodos , Etanol/química , Geles , Desinfección de las Manos/métodos , Higiene de las Manos/métodos , Desinfectantes para las Manos/provisión & distribución , Humanos , Flujo de Trabajo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA